Here is class 12 computer science Unit 10 [Section B] solutions for Sumita Arora back exercise assignment. Below includes both textual and video solutions wherever required. View all the answers in assignment for chapter 10 and for all chapters here.

Watch all tutorials for chapter 10.

## Q1: Translate following infix expression into its equivalent postfix expression:

( (A-B)*(D/E)/(F*G*H)

Input String = ((A-B)*(D/E))/(F*G*H)

Output Stack | Operator Stack |

(( | |

A | (( |

A | ((- |

AB | ((- |

AB- | ( |

AB- | (* |

AB- | (*( |

AB-D | (*( |

AB-D | (*( / |

AB-DE | (*( / |

AB-DE/* | |

AB-DE/* | /( |

AB-DE/*F | /( |

AB-DE/*F | /(* |

AB-DE/*FG | /(* |

AB-DE/*FG | /(* |

AB-DE/*FG*H | /(* |

AB-DE/*FG*H*/ |

## Q2: Translate following infix expression into its equivalent postfix expression :

(A+B↑D)/(E-F)+G

Input String = (A+B^D)/(E-F)+G

OUTPUT STACK | OPERATION STACK |

( | |

A | ( |

A | (+ |

AB | (+ |

AB | (+^ |

ABD | (+^ |

ABD^+ | |

ABD^+ | /( |

ABD^+E | /( |

ABD^+E | /(- |

ABD^+EF | /(- |

ABD^+EF- | / |

ABD^+EF-/ | + |

ABD^+EF-/G | + |

ABD^+EF-/G+ |

## Q3: Translate following infix expression into its equivalent postfix expression :

A*(B+D)/E-F-(G+H/K)

Input String = A*(B+D)/E-F-(G+H/K)

Expression Stack | OperatorStack |

A | |

A | * |

A | *( |

AB | *( |

AB | *(+ |

ABD | *(+ |

ABD+ | * |

ABD+* | / |

ABD+*E | / |

ABD+*E/ | – |

ABD+*E/F | – |

ABD+*E/F- | – |

ABD+*E/F- | -( |

ABD+*E/F-G | -(+ |

ABD+*E/F-GH | -(+ |

ABD+*E/F-GH | -(+/ |

ABD+*E/F-GHK | -(+/ |

ABD+*E/F-GHK/+ | – |

ABD+*E/F-GHK/+- |

## Q4: Write the equivalent infix expression for

10,3,*,7,1,-,*,23,+

Stack |

10 |

3 10 |

10*3 |

7 10*3 |

1 7 10*3 |

7-1 10*3 |

(10*3)*(7-1) |

2 (10*3)*(7-1) |

3 2 (10*3)*(7-1) |

## Q5: Write the equivalent infix expression for a,b,AND,a,c,AND,OR

Stack |

a |

b a |

a AND b |

a a AND b |

c a a AND b |

a AND c a AND b |

(a AND b) or (a AND b) |

## Q6: Consider the arithmetic expression P, written in postfix notation:

12,7,3,-,/,2,1,5,+,*,+

(a) Translate P, into its equivalent infix expression.

(b) Evaluate the infix expression.

Stack |

12 |

7 12 |

3 7 12 |

7-3 12 |

12/(7-3) |

2 12/(7-3) |

1 2 12/(7-3) |

5 1 2 12/(7-3) |

1+5 2 12/(7-3) |

2*(1+5) 12/(7-3) |

12/(7-3) + (2*(1+5)) |

Solved = 15 |

## Q7: Convert the following infix notation of expression to an equivalent postfix notation of expression (Show status of the stack after the execution of each operation) :(A+B)*C-D / E

Input string: (A+B)*C-D / E

Stack | Operator |

( | |

A | (+ |

AB | (+ |

AB+ | |

AB+ | * |

AB+C | * |

AB+C* | – |

AB+C*D | – |

AB+C*D | -/ |

AB+C*DE | -/ |

AB+C*DE/- |

## Q8: Consider each of the following postfix expressions:

P1: 5,3,+,2,*,6,9,7,-,/-

P2: 3,5,+,6,4,-,*,4,1,-,2,↑,+

P3:3,1,+,2,↑,7,4,-,2,*,+,5,-

Translate each expression into infix notation and then evaluate

Input expression = 5,3,+,2,*,6,9,7,-,/-

5 |

3 5 |

5+3 |

2 5+3 |

(5+3)*2 |

7 9 6 (5+3)*2 |

9-7 6 (5+3)*2 |

6/(9-7) (5+3)*2 |

(5+3)*2 – 6/(9-7) |

Result = 13 |

P2: 3,5,+,6,4,-,*,4,1,-,2,↑,+

5 3 |

3+5 |

4 6 3+5 |

6-4 3+5 |

(3+5)*(6-4) |

1 4 (3+5)*(6-4) |

4-1 (3+5)*(6-4) |

2 4-1 (3+5)*(6-4) |

(4-1)^2 (3+5)*(6-4) |

(3+5)*(6-4) + (4-1)^2 |

result = 25 |

P3 : 3,1,+,2,↑,7,4,-,2,*,+,5,-

1 3 |

3+1 |

2 3+1 |

(3+1)^2 |

4 7 (3+1)^2 |

7-4 (3+1)^2 |

2 7-4 (3+1)^2 |

(7-4)*2 (3+1)^2 |

(3+1)^2 + (7-4)*2 |

5 (3+1)^2 + (7-4)*2 |

(3+1)^2 + (7-4)*2 – 5 |

Result = 17 |

## Q9: Give postfix form of the following expression :

A*(B+(C+D)*(E+F) /G)*H

Input String = A*(B+(C+D)*(E+F) /G)*H

Stack | Operator |

A | * |

AB | *( |

AB | *(+ |

AB | *(+( |

ABC | *(+(+ |

ABCD+ | *(+ |

ABCD+ | *(+* |

ABCD+E | *(+*( |

ABCD+EF | *(+*(+ |

ABCD+EF+ | *(+* |

ABCD+EF+* | *(+/ |

ABCD+EF+*G | *(+/ |

ABCD+EF+*G/+ | *(* |

ABCD+EF+*G/+*H* |

## Q10: Give postfix form for A+{ (B+C)+(D+E)*F}/G

Input string = A+{(B+C)+(D+E)*F}/G

Stack | Operator |

A | +{( |

AB | +{( |

AB | +{(+ |

ABC | +{(+ |

ABC+ | +{ |

ABC+ | +{+( |

ABC+D | +{+( |

ABC+D | +{+(+ |

ABC+DE+ | +{+ |

ABC+DE+ | +{+* |

ABC+DE+F | +{+* |

ABC+DE+F*+ | + |

ABC+DE+F*+G | +/ |

ABC+DE+F*+G/+ |

## Q11: Give postfix form of expression for the following

(i) NOT A OR NOT B AND NOT C

(ii)NOT (A OR B) AND C

Order NOT>AND>OR (i) NOT A OR NOT B AND NOT C

Stack | operator |

NOT | |

A | OR |

A NOT | OR |

A NOT B | OR NOT |

A NOT B NOT | OR AND |

A NOT B NOT | OR AND NOT |

A NOT B NOT C | OR AND NOT |

A NOT B NOT C NOT AND OR | |

(ii)NOT (A OR B) AND C

Stack | Operator |

NOT | |

NOT ( | |

A | NOT ( OR |

A B | NOT ( OR |

A B OR | NOT |

A B OR | AND |

A B OR NOT | AND |

A B OR NOT C | AND |

A B OR NOT C AND |

## Q12: Evaluate the following postfix notation of expression:

True, False, NOT, AND, True, True, AND, OR

Order NOT>AND>OR

True |

False True |

Not False True |

True AND (NOT False) |

True True AND (NOT False) |

True True True AND (NOT False) |

True AND True True AND (NOT False) |

(True AND (NOT False)) OR (True AND True) |

Output : True |

## Q13: Evaluate the following postfix expression using a stack and show the contents of the stack after execution of each operation 5,11, -,6,8,+,12,*, /

5,11, -,6,8,+,12,*, /

5 |

11 5 |

5-11 |

6 5-11 |

8 6 5-11 |

6+8 5-11 |

12 6+8 5-11 |

(6+8)*12 5-11 |

(5-11) / ((6+8)*12) |

ans = -1/28 |

## Q14: Let P be the postfix arithmetic expression : 7,2,-,1,14,-,1,2,* Evaluate P using stack and showing the status of the stack at every step.

7,2,-,1,14,-,1,2,* Incomplete question for the final evaluation as operator are missing.

## Q15: Consider the infix expression:

Q:A+B*C↑(D/E)/F.

Translate Q into P, where P is the postfix equivalent expression of Q, what will be the result of Q if this expression is evaluated for A,B,C,D,E,F as 2,3,2,7,2,2 respectively.

Q : A+B*C^(D/E)/F

Stack | Operator |

A | |

A | + |

AB | + |

AB | +* |

ABC | +* |

ABC | +*^ |

ABC | +*^( |

ABCD | +*^( / |

ABCDE | +*^( / |

ABCDE/ | +*^ |

ABCDE/^* | +/ |

ABCDE/^*F/+ | |

A,B,C,D,E,F = 2,3,2,7,2,2 | |

res = 19(approx) |

## Q16: Write equivalent Postfix expressions for the infix expressions given below :

(i) A+B-D/X (ii) (X+Y)/(2*Y)-R

(i) A B + D X / - (ii)X Y + 2 Y * / R -

## Q17: Evaluate the following postfix notation of expression: 10 20+25 15-*30/

10 20+25 15-*30/

10 |

20 10 |

10+20 = 30 |

25 30 |

15 25 30 |

25-15 =10 30 |

30*10 = 300 |

30 300 |

300/30 = 10 |

res = 10 |

## Q18: Evaluate the following postfix notation of expression: 20 10+5 2*-10/

20 10+5 2*-10/

20 |

10 20 |

20+10 = 30 |

5 30 |

2 5 30 |

5*2 = 10 30 |

30-10 = 20 |

10 20 |

20/10 = 2 |

res = 2 |

## Q19: Evaluate the following postfix expression using a stack and show the contents of the stack after the execution of each operation :

120,45,20, +, 25,15,-,+,*

120,45,20, +, 25,15,-,+,*

45 120 |

20 45 120 |

45+20 = 65 120 |

25 65 120 |

15 25 65 120 |

25-15 = 10 65 120 |

65+10 = 75 120 |

120*75 |

res = 9000 |

## Q20: Evaluate the following postfix expression using a stack and show the contents of stack after execution of each operation:

20,45,+,20,10,-,15,+,*

20,45,+,20,10,-,15,+,*

45 20 |

65 |

20 65 |

10 20 65 |

10 65 |

15 10 65 |

25 65 |

65*25 |

res = 1625 |

## Q21: Use a stack to evaluate the following postfix expression and show the content of the stack after execution of each operation. Don’t write any code. Assume as if you are using push and pop member functions of the stack AB-CD+E*+

(where A=5,B=3,C=5,D=4,and E=2)

5 3 - 5 4 + 2 * +

3 5 |

2 |

4 5 2 |

9 2 |

2 9 2 |

18 2 |

20 |

res = 20 |

## Q22: Change the following infix expression into postfix expression.(A+B)*C+D/E-F

postfix = A B + C * D E / + F -

A | (+ |

AB | (+ |

AB+ | |

AB+C | * |

AB+C* | + |

AB+C*D | +/ |

AB+C*DE | +/ |

AB+C*DE | – |

AB+C*DE/+ | – |

AB+C*DE/+F- |

## Q23: Evaluate the following postfix notation of expression :

(Show status of Stack after each operation)

True, False, NOT,OR,False,True,OR,AND

ORDER OF OPERATOR NOT>AND>OR True, False, NOT, OR, False, True, OR, AND

True |

False True |

NOT False True |

True OR (NOT False) |

False True OR (NOT False) |

True False True OR (NOT False) |

False OR True True OR (NOT False) |

True OR (NOT False) AND False OR True |

ans = True |

## Q24: Convert the following infix expression to its equivalent postfix expression showing stack contents for the conversion :

X-Y/(Z+U)=V

X-Y/(Z+U)=V

X | – |

XY | -/ |

XY | -/( |

XYZ | -/( |

XYZ | -/(+ |

XYZU | -/(+ |

XYZU+ | -/ |

V= XYZU+/- |

## Q25: Convert the following infix expression to its equivalent postfix expression showing stack contents for the conversion :

A+B*(C-D )/ E

A+B*(C-D )/ E

A | |

A | + |

AB | + |

AB | +* |

AB | +*( |

ABC | +*( |

ABC | +*(- |

ABCD | +*(- |

ABCD-* | + |

ABCD-* | +/ |

ABCD-*E/+ | |

Clear Doubts with Computer Tutor

In case you’re facing problems in understanding concepts, writing programs, solving questions, want to learn fun facts | tips | tricks or absolutely anything around computer science, feel free to joinCTs learner-teacher community:students.computertutor.in